On the spontaneous collective motion of active matter.

نویسندگان

  • Shenshen Wang
  • Peter G Wolynes
چکیده

Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric control of active collective motion.

Recent experimental studies have shown that confinement can profoundly affect self-organization in semi-dilute active suspensions, leading to striking features such as the formation of steady and spontaneous vortices in circular domains and the emergence of unidirectional pumping motions in periodic racetrack geometries. Motivated by these findings, we analyze the two-dimensional dynamics in co...

متن کامل

Controlling active self-assembly through broken particle-shape symmetry.

Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identif...

متن کامل

Collective dynamics in systems of active Brownian particles with dissipative interactions.

We use computer simulations to study the onset of collective motion in systems of interacting active particles. Our model is a swarm of active Brownian particles with an internal energy depot and interactions inspired by the dissipative particle dynamics method, imposing pairwise friction force on the nearest neighbors. We study orientational ordering in a 2D system as a function of energy infl...

متن کامل

Active Motion in Systems with Energy Supply

Biological motion, human traffic and many other types of active motion rely on the supply of energy. In order to derive a rather general approach for active motion, we have proposed a model of active Brownian particles, which have the ability to take up energy from their environment, to store it in an internal energy depot and to convert internal energy to perform different activities, such as ...

متن کامل

Collective dynamics of soft active particles.

We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 37  شماره 

صفحات  -

تاریخ انتشار 2011